1. The difference between the cube numbers over their previous square partners is an arithmetic progression with common difference of 1. See them below:
2+1=3
3+3=6
4+6=10
5+10=15
6+15=21
7+21=28
8+28=36
9+36=45
10+45=55
11+55=66
12+66=78
13+78=91
14+91=105
15+105=120
16+120=136
17+136=153
18+153=171
19+171=190
20+190=210
21+210=231
22+231=253
23+253=276
24+276=300
25+300=325
26+325=351
27+351=378
28+378=406
29+406=435
30+435=465
31+465=496
32+496=528
33+528=561
34+561=595
35+595=630
36+630=666
37+666=703
38+703=741
39+741=780
40+780=820
41+820=861
42+861=903
43+903=946
44+946=990
45+990=1035
Actually, we can easily find the numbers matching the pattern by solving the equation:
a^3+b^2 = (a+b)^2;
=>a^3+b^2 = a^2+b^2+2*a*b;
=>b = a*(a-1)/2
This explains the AP of constant 1 between the numbers for every value of a.
Java Source code that helped to find this (though its of no use now) :
a^3+b^2 = (a+b)^2;
=>a^3+b^2 = a^2+b^2+2*a*b;
=>b = a*(a-1)/2
This explains the AP of constant 1 between the numbers for every value of a.
Java Source code that helped to find this (though its of no use now) :
public void findSquareCubeNumbers(int count){
for (int i = 1; i < count; i++){
int num = i*i*i;
for (int j = 1; j < count; j++){
int sum = i+j;
if (num+(j*j)==sum*sum){
System.out.println(i+"+"+j+"="+sum);
}
}
}
}
2. For any number n from 1 to 10 and any number k that satisfy the condition - k^n + k^(n+1) = (k+k)^n
the next such condition is satisfied by (2k+1).
The below illustration is the proof:
(k= 1((2*0)+1); n= 1) 1^1+1^2=2^1
(k= 3((2*1)+1); n= 2) 3^2+3^3=6^2
(k= 7((2*3)+1); n= 3) 7^3+7^4=14^3
(k= 15((2*7)+1); n= 4) 15^4+15^5=30^4
(k= 31((2*15)+1); n= 5) 31^5+31^6=62^5
(k= 63((2*31)+1); n= 6) 63^6+63^7=126^6
(k= 127((2*63)+1); n= 7) 127^7+127^8=254^7
(k= 255((2*127)+1); n= 8) 255^8+255^9=510^8
(k= 511((2*255)+1); n= 9) 511^9+511^10=1022^9
(k= 1023((2*511)+1); n= 10) 1023^10+1023^11=2046^10
Java Source code that helped to find this:
public void findNextPowerNumbers(int powVal, int count){
double prevK = 0;
for(double i = 1; i < powVal; i++){
double power = i+1;
for (double k = 1; k < count; k++){
double num = Math.pow(k, power);
double num1 = Math.pow(k, i);
double sum = 2*k;
double num3 = Math.pow(sum, i);
if (num+num1 == num3){
System.out.println("(k= "+k+"((2*"+prevK+")+1); n= "+i+") "+k+"^"+i+"+"+k+"^"+power+"="+sum+"^"+i);
prevK=k;
}
}
}
}
No comments:
Post a Comment